На главую страницу

Физика → Методика → Экзамены → Ответы на билеты устных экзаменов → 29. Последовательное соединение проводников


   29. Последовательное соединение проводников

1. Виды соединений проводников. 2. Закономерности последовательного соединения проводником. 3. Применение. 4. Распространенные ошибки.

Современные материалы позволяют изготовить резисторы с самыми разнообразными значениями сопротивлений, но из этого не следует, что отсутствует необходимость разнообразия соединения проводимков друг с другом. Это связано с современными технологиями производства. Потребители электрической энергии к их источникам также присоединяются различными способами.

Различают последовательное, параллельное и смешанное соединения проводников. При последовательном соединении (рис. 43, а) через все резисторы проходит один и тот же ток. При параллельном соединении (рис. 43, б) на всех резисторах создано одно и то же напряжение. При смешанном соединении (рис. 43, в) используются и последовательное, и параллельное соединения проводников.

При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом. На рисунке 44 показано последовательное соединение двух проводников 1 и 2, имеющих сопротивления  R_1 и  R_2 . Это могут быть две лампы, две обмотки электродвигателя и т.д.

Сила постоянного тока в обоих проводниках одинакова:  I_1 = I_2 = I , так как в проводниках электрический заряд в случае постоянного тока не накапливается и через любое сечение проводника за определенный интервал времени проходит один и тот же заряд.

Напряжение (или разность потенциалов) на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках:

 U = U_1 + U_2 .

Применяя закон Ома для участка цепи  I = \frac{U}{R} , можно доказать, что полное сопротивление при последовательном соединении равно сумме сопротивлений отдельных проводников.

Действительно, из формулы  U = U_1 + U_2 получим  IR = IR_1 + IR_2 . После сокращения окажется, что  R = R_1 + R_2 . Аналогичную формулу можно применить для любого числа последовательно соединенных проводников.

Напряжения на проводниках и их сопротивления при последовательном соединении связаны соотношением:  \frac{U_1}{U_2} = \frac{R_1}{R_2} .

Для измерения силы тока в проводнике амперметр включают последовательно с этим проводником (рис. 45). Но нужно иметь в виду, что сам амперметр обладает некоторым сопротивлением  R_A . Поэтому сопротивление участка цепи с включенным амперметром увеличивается, и при неизменном напряжении сила тока уменьшается в соответствии с законом Ома  I = \frac{U}{R} . Чтобы амперметр оказывал как можно меньшее влияние на силу измеряемого им тока, его сопротивление делают очень малым. Это нужно помнить и никогда не пытаться «измерить силу тока» в осветительной сети, подключая амперметр к розетке. Произойдет короткое замыкание. Сила тока при малом сопротивлении прибора достигнет столь большой величины, что обмотка амперметра сгорит.



Оставить комментарий
Сообщить об ошибке