На главую страницу

Математика → Методика → Олимпиады → Международное исследование образовательных достижений учащихся PISA → Математическая грамотность → Яблони


Яблони

       Фермер на садовом участке высаживает яблони в форме квадрата, как показано на рисунке. Для защиты яблонь от ветра он сажает по краям участка хвойные деревья. Ниже на рисунке изображены схемы посадки яблонь и хвойных деревьев для нескольких значений n, где n — количество рядов высаженных яблонь. Эту последовательность можно продолжить для любого числа n.

       Вопрос 1. Заполните таблицу:

n Количество яблонь Количество хвойных деревьев
1 1 8
2 4  
3    
4    
5    

       Решение.
       1-й способ. Яблони образуют квадрат из n рядов по n деревьев. Значит, всего яблонь n^2. Вдоль каждой боковой стороны участка высажено 2n + 1 хвойное дерево. При сложении всех четырех боковых сторон каждое из четырех угловых деревьев будет посчитано дважды. Значит хвойных деревьев всего 4 \cdot (2n + 1) - 4 = 8n.
       2-й способ. Число хвойных деревьев можно посчитать по-другому. Согласно схеме, между n яблонями садовник оставляет n-1 промежуток. Участок внутри хвойных деревьев является квадратом со стороной n + (n - 1) = 2n - 1. Длина стороны всего участка вместе с хвойными деревьями составляет 2n + 1. Тогда число хвойных деревьев равно (2n + 1)^2 - (2n - 1)^2 = 8n.
       В итоге, таблица выглядит следующим образом:

n Количество яблонь Количество хвойных деревьев
1 1 8
2 4 16
3 9 24
4 16 32
5 25 40

Ответ: см. таблицу.

       Вопрос 2. В рассмотренной выше последовательности количество посаженных яблонь и хвойных деревьев подсчитывается следующим образом: количество яблонь =n^2, количество хвойных деревьев = 8n, где n — число рядов высаженных яблонь. Для какого значения n число яблонь будет равно числу посаженных вокруг них хвойных деревьев?
       Решение. Решим уравнение:

n^2 = 8n \Leftrightarrow n(n - 8) = 0 \Leftrightarrow \left[ \begin{array}{l} n = 0, \\ n = 8. \\ \end{array} \right.

       По смыслу задачи число рядов яблонь n > 0, значит, только при n = 8 число яблонь совпадет с числом хвойных деревьев.
Ответ: 8.

       Вопрос 3. Предположим, что фермер решил постепенно увеличивать число рядов яблонь на своем участке. Что при этом будет увеличиваться быстрее: количество высаживаемых яблонь или количество хвойных деревьев?
       Решение. При увеличении на один ряд число хвойных деревьев увеличивается на 8(n + 1) - 8n = 8, а число яблонь увеличивается на (n + 1)^2  - n^2  = 2n + 1. Видно, что 2n + 1 > 8 при n \ge 4. Начиная с четырех рядов, при последующем увеличении участка число яблонь увеличивается быстрее числа хвойных деревьев.
Ответ: количество высаживаемых яблонь меньше количества хвойных деревьев при увеличении числа рядов яблонь с одного ряда до четырех, при дальнейшем увеличении числа рядов яблонь количество высаживаемых яблонь больше количества хвойных деревьев.



Оставить комментарий
Сообщить об ошибке