На главую страницу

Математика → Теория → Персоналии → Клейн Феликс → Научная деятельность


К середине XIX века геометрия разделилась на множество плохо согласованных разделов: евклидова, сферическая, гиперболическая, проективная, аффинная, риманова, многомерная, комплексная и т. д.; на рубеже веков к ним добавились ещё псевдоевклидова геометрия и топология.

Клейну принадлежит идея алгебраической классификации различных отраслей геометрии в соответствии с теми классами преобразований, которые для этой геометрии несущественны. Более точно выражаясь, один раздел геометрии отличается от другого тем, что им соответствуют разные группы преобразований пространства, а объектами изучения выступают инварианты таких преобразований.

Например, классическая евклидова геометрия изучает свойства фигур и тел, сохраняющиеся при движениях без деформации; ей соответствует группа, содержащая вращения, переносы и их сочетания. Проективная геометрия может изучать конические сечения, но не имеет дела с кругами или углами, потому что круги и углы не сохраняются при проективных преобразованиях. Топология исследует инварианты произвольных непрерывных преобразований (кстати, Клейн отметил это ещё до того, как родилась топология). Изучая алгебраические свойства групп преобразований, мы можем открыть новые глубокие свойства соответствующей геометрии, а также проще доказать старые. Пример: медиана есть аффинный инвариант; если в равностороннем треугольнике медианы пересекаются в одной точке, то и в любом другом это будет верно, потому что любой треугольник можно аффинным преобразованием перевести в равносторонний и обратно.

Клейн высказал все эти идеи в выступлении 1872 года «Vergleichende Betrachtungen tiber neuere geometrische Forschungen» («Сравнительное рассмотрение новых геометрических исследований»), получившем название «Эрлангенской программы». Оно привлекло внимание математиков всей Европы тем, что не только давало новое представление и предмете геометрии, но и намечало ясную перспективу дальнейших исследований. На новом уровне повторилось открытие Декарта: алгебраизация геометрии позволила получить результаты, для старых инструментов крайне затруднительные или вовсе недостижимые. Влияние «Эрлангенской программы» на дальнейшее развитие геометрии было исключительно велико.

В последующие 3 года Клейн опубликовал более 20 работ по неевклидовой геометрии, теории групп Ли, теории многогранников и эллиптическим функциям. Одним из важнейших его достижений стало первое доказательство непротиворечивости геометрии Лобачевского; для этого он построил её интерпретацию в евклидовом пространстве (см. модель Клейна).

Клейн напечатал ряд работ о решении уравнений 5-й, 6-й и 7-й степеней, об интегрировании дифференциальных уравнений, об абелевых функциях, о неэвклидовой геометрии. Его труды печатались главным образом в «Mathematische Annalen», редактором которых он с 1875 года был вместе с Адольфом Майером. Позже он исследовал автоморфные функции, теорию волчка.

Лекции Клейна пользовались большой популярностью, многие из них были неоднократно переизданы и переведены на множество языков. Он также опубликовал несколько монографий по анализу, сводящих воедино достгнутые на тот момент результаты.

Ещё при жизни Клейна вышел трёхтомник его Собрания сочинений.

Оставить комментарий
Сообщить об ошибке