На главую страницу

Математика → Теория → Персоналии → Риман Бернхард → Биография


Родился 17 сентября 1826 в деревне Брезеленц близ Ганновера в семье лютеранского пастора. Учился в гимназиях Ганновера и Люнебурга. В 1846 поступил в Гёттингенский университет с намерением изучать теологию и филологию, чтобы по воле отца стать священником. Но, увлекшись математикой, стал посещать лекции по таким далеким от теологии предметам, как численное решение уравнений, определенные интегралы (их читал К.Гаусс), земной магнетизм, метод наименьших квадратов. Отец Римана внял настоятельным просьбам сына, и тот получил желанную возможность целиком посвятить себя математике. В 1847 он прослушал в Берлинском университете курс лекций известных математиков того времени, в том числе К.Якоби по механике и П.Дирихле по теории чисел. Именно там был заложен фундамент исследований Римана по теории функций комплексного переменного. По возвращении в Гёттинген в 1849 он сблизился с сотрудником Гаусса В.Вебером, который пробудил в нем интерес к физике. Занятия ею настолько поглотили его, что докторскую диссертацию Основы общей теории функций комплексного переменного (Grundlagen f r eine allegemeine Theorie der Functionen einer ver nderlichen complexen Gr sse), получившую высокую оценку К.Гаусса, одного из своих оппонентов, Риман представил только в 1851. В своей диссертации он положил начало геометрическому направлению теории аналитических функций, ввел т.н. римановы поверхности, что внесло в анализ топологические представления, разработал теорию конформных отображений. В диссертации разъясняется и риманово определение комплексной функции.

В 1854 Риман выступил сразу с двумя фундаментальными работами: о представимости функций тригонометрическими рядами и О гипотезах, лежащих в основаниях геометрии ( ber die Hypothesen , welche der Geometrie zu Grunde liegen, 1854). Последняя работа ныне считается классической. В ней Риман предложил общую идею математического пространства как многообразия произвольного числа измерений, классифицировал все существовавшие виды геометрии, включая и весьма неясную в то время неевклидову геометрию, показал возможность создания любого числа новых типов пространства, многие из которых были затем введены в геометрию и математическую физику. Он рассмотрел т.н. римановы пространства, поставил вопрос о «причинах метрических свойств» физического пространства, как бы предваряя то, что было сделано позднее в общей теории относительности А.Эйнштейном. В 1854 он стал приват-доцентом Гёттингенского университета, в 1857 — экстраординарным профессором, в 1859 — директором Гёттингенской обсерватории.

В последние годы своей недолгой жизни Риман был удостоен многочисленных почестей, получил признание ведущих ученых, был избран членом различных научных обществ, в том числе Лондонского королевского общества и Французской Академии наук. Никогда не отличавшийся крепким здоровьем, в 1862 он серьезно заболел плевритом и так и не оправился от этой болезни. Последние четыре года жизни провел в Италии. Умер Риман в Селаске на озере Лаго-Маджоре 20 июля 1866.

Оставить комментарий
Сообщить об ошибке