На главую страницу

Математика → Теория → Персоналии → Пуанкаре Анри → Научная деятельность


Математическая деятельность Пуанкаре носила междисциплинарный характер, благодаря чему за тридцать с небольшим лет своей напряженной творческой деятельности он оставил фундаментальные труды практически во всех областях математики.

Работы Пуанкаре, опубликованные Парижской Академией наук в 1916—1956, составляют 11 томов. Это труды по созданной им топологии, теории вероятностей, теории дифференциальных уравнений, теории автоморфных функций, неевклидовой геометрии, интегральным уравнениям, теории чисел.

Пуанкаре серьёзно использовал и дополнил методы математической физики, в частности, внёс существенный вклад в теорию потенциала, теорию теплопроводности. Он также занимался решением различных задач по механике, электромагнетизму и астрономии.

Первые математические результаты получил в области автоморфных функций. После защиты докторской диссертации, посвящённой изучению особых точек системы дифференциальных уравнений, Пуанкаре написал ряд мемуаров под общим названием «О кривых, определяемых дифференциальными уравнениями». В них он построил качественную теорию дифференциальных уравнений, исследовал характер хода интегральных кривых на плоскости, дал классификацию особых точек, изучил предельные циклы.

Пуанкаре успешно применял результаты своих исследований к задаче о движении трёх тел, детально изучив поведение решения (периодичность, асимптотичность и т. д.). Им введены методы малого параметра, неподвижных точек, уравнений в вариациях, разработана теория интегральных инвариантов.

Пуанкаре принадлежат многие важные для небесной механики труды об устойчивости движения и о фигурах равновесия гравитирующей вращающейся жидкости. Пуанкаре впервые ввёл в рассмотрение автоморфные функции и детально их исследовал. При разработке их теории он применил геометрию Лобачевского.

Для функций нескольких комплексных переменных он построил теорию интегралов, подобную теории интегралов Коши.

Все эти исследования в конце концов привели Пуанкаре к абстрактному топологическому определению гомотопии и гомологии. Также он впервые ввёл основные понятия комбинаторной топологии, такие как числа Бетти, фундаментальную группу, доказал формулу, связывающую число рёбер, вершин и граней n-мерного полиэдра (формулу Эйлера — Пуанкаре), дал первую точную формулировку интуитивного понятия размерности.

В области математической физики Пуанкаре исследовал колебания трёхмерных континуумов, изучил ряд задач теплопроводности, а также различные задачи в области теории потенциала, электромагнитных колебаний. Ему принадлежат также труды по обоснованию принципа Дирихле, для чего он разработал т. н. метод выметания.

В последние 2 года Пуанкаре живо интересовался квантовой теорией. Он доказал, что невозможно получить закон излучения Планка без гипотезы квантов, тем самым похоронив все надежды как-то сохранить классическую теорию.

Оставить комментарий
Сообщить об ошибке